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On the Question of Computation of the Dyadic Green’s
Function at the Source Region in Waveguides and Cavities

Y. RAHMAT-SAMII

Abstract—The derivation of the dyadic Green’s function for rec-
tangular waveguides and cavities is approached systematically by
using the theory of distributions. It is shown that, in order to obtain

a complete solution for the field distribution in the entire structure,

one must add an additional term {o the classical expansion which is
valid only outside the source region.

I. INTRODUCTION

In a recent paper, Collin [1] has discussed the question of in-
completeness of the E and H modes in the source region of a wave-
guide, and has shown that an additional term must be added to the
classical representation of the field expression in order to derive
a complete solution that is valid both in the source and source-free
region of the waveguide. Tai [27] has also noted the difficulties in-
volved in the computation of the dyadic Green’s function, and has
presented a solution based upon the use of eigenvector functions
M and N. Neither of the preceding methods shares the simplicity of
the conventional techniques used in solving the source-free wave-
guide problems, nor gives a clear picture of removing the difficulties
involved in computing the dyadic Green’s function in the source
region. .

The purpose of this short paper is to develop a systematic and novel
approach for determining the dyadic Green’s function and, conse-
quently, the field distribution in the entire region of rectangular
waveguides and cavities. It is shown that if one carefully defines the
derivatives in the distribution sense and applies the correct complete-
ness property of the modes, it is then possible to construct the com-
plete solution for the entire structure just by employing the scalar
eigenfunctions of the Helmholtz equation.

II. COMPUTATION OF THE DYADIC GREEN’S
FUNCTION G, AND FIELD DISTRIBUTION
IN WAVEGUIDES

It is well known that the electric field excited by an electric current
source can be expressed in terms of the dyadic Green’s function
G.(r| 1) as
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E(r) = —jwp./ Ge(r|r)-J(r) dv'. 1)
4
One may notice from the preceding equation that care must be
exercised in deriving G.(r | 7’) at the source region if one wants to
perform. the preceding integration correctly. It is our purpose to
derive the correct G, in this section. The geometry of the problem
with dimensions a and b along = and y axes, respectively, is a perfectly
conducting rectangular waveguide aligned along the 2z axis and
excited by a finite-volume electric current source.
To attack the problem, we write the Maxwell’s equation and
necessary boundary conditions as

VX H=J+4 jocE

s in the waveguide (2a)

It

VXE —jopH

nXE =0, on the wall. (2b)

Tt is assumed that the waveguide is filled with a homogeneous and
isotropic material. In order to obtain the unique solution, the field
components must also satisfy the Sommerfeld radiation condition
along the z axis. From (2) one easily concludes that

v-H =0, in the waveguide (3a)

#-H =0, on the wall. (3b)

It is also trivial to show that £ and H fields can be separated as
follows: :

VXVXE—KE = —jou] (4a)

(4b)

In order to solve the preceding boundary-value problem, we intro-
duce the electric-type dyadic Green’s function G.(r|7’) and
magnetic-type dyadic Green’s function G (7| r") by the following
definitions:

VXVXH-—-FPH=VXJ

VX VX G — BC, = 15(r — ') L (B
AX G, =0, onthewall.”  (5b)
and /"/
VXVX Gy — kG, =V XIB(r—r) (6a)
7°Gm =0
, on the wall (6b)

AXVX Gn=0

where I is a unit dyadic. Notice that G, and G, are also subjected
to the Sommerfeld radiation condition as discussed by Tai [3].

The first equation of (2a) shows that the following relation holds
between G, and G:

kG, = V X G, — I6(r — ). (7)

Note that (1) can be derived by applying the Green’s theorem
between E and G., and by making use of the boundary and radiation
conditions.

The central issue regarding the completeness of modal representa~
tion of the dyadic Green’s function is that V-G, » 0 in the wave-
guide. That V-G, = 0 is evident if the divergence operator is
applied to both sides of (5a) and by recalling that V-16(r — 7') 0.
Since V-G, is not zero in the entire waveguide, G. cannot be con-
structed in terms of the superposition of E modes alone (see, for
instance, Goubau [4]). An additional term is necessary to obtain
the complete form of G.. In what follows, G, will be found by using
(7) after the complete form of G, is derived. It should be noted that
in contrast to Ge, G can be expressed in terms of H modes only,
since V- Gn = 0 everywhere. ’

In the following, a procedure is presented for constructing Gm
which is believed to be simpler than Tai’s method. Tai [2] used
eigenvector functions M and N, which are divergenceless vectors to
expand V X 18(r — r'), and then he constructed G. from (6a).

In our procedure, we use the fact that V-G, = 0and V X V X =
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VV+.—V? to obtain the following alternative form for (6), namely
(V2 4 %) G. (8a)

A Gp =0
, on the wall.

—V X Ia(r—17")

(8b)

The preceding equation is an inhomogeneous Helmholtz equation
which is readily solved by introducing another Green’s function in
the following manner:

(V2 + k) gm = —15(r — 1) (9a)
#rgm =0
, on the wall. (9b)
ﬁ X v X gm = 0
Applying Green’s theorem, one obtains
Gu(r|r) = / g (7 | Y1)V X 15(r — 1) dy'’ (10)

where V" means differentiation with respect to r”’ coordinates.
Simplification results through the introduction of g, because it is
a diagonalized dyadic, and therefore its elements may be obtained
by simply solving a scalar Helmholtz equation in the following
form:

gmzz 1
(V) gt == {1}s(r—1) (11a)
gmu 1
Aogm =0
, on the wall. (11b)
AXV X gn=0

To obtain the unique solution, the radiation condition must also be
fulfilled. The boundary value problem (11) may be easily solved
to obtain the following result:

on(r 1) = 2 3 " oxp (—Tom |2 — 2" |)
=0 m=0 2abr"m

anf . nwx | nxz mny 9n7ry"
+| zx { sin — sIn €OS —— CO0S
- a aQ

b b

L A nrr nrx’” | mwy . mxy”
4+ yy | cos — cos sln —— sin
a a b b

An nrx nwxz'’ m may’’
+ 2% €08 —— 608 —— 608 nmy cos ik 12)
a a b b
where e is an indicator with the following definition:

m =10
(13)
m #0

2 2
Ton? = k2 — (’—Z-') - (’—”bl') and & = w(ue)h.

We now substitute (12) into (10) and perform. the integration to
solve for G. This integration can be done in a simple way if one
incorporates some elementary theorems of the distribution theory
[5], [61. To do this, the following equations are used to simplify the
process of integration in (10):

a ~ a ~l A 8 ~

v X8 — ') = a_z’—'a Y — ay,,ﬁ 2tz + pywy 3
— i V219 + ._.a_ 512 — _8_ sl7ls

azll z y ayll x axll y 2

(14)
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<]
~—exp (—Tam |2 — 2" |) = Tan[0(z — 2"") —0(z" - 2)]

azll
«exp (—Tum |2 —2"]) (15)
where
1, z2>0
0(z) =
0, 2<0
and
a8 9
f — -2 |fdv = — —i (16)
" 9z e

Having employed (14), (15), and (16) in (10), one can easily
perform the integration and obtain the following result:

G (r| 7"

> . wwx |, nax!
=2 X nfm {I‘nm[f)(z —2) — 8@ — z)]s1n~1 sin 21
a

n=0 m=0 2a’br"m

may’ n  mw . nwr . nwc’ mwy !
~cos—b €08 —— ZY + — sin— sin —— cos —— sin —= %2
a a

b b

nr nre nxx'

. . mny . may’ ..
— — €08 —— 8In sy —— 8t —— Y3
a a

b b
— Tam[0(z — 2") —6(z' — 2)]

nrx nrx’ . mry | mwy' ..
*€0S —— €08 —— sin —— sin —— ¥
a a b b

mn nrx nwi' may

— —— CO8 cos cos —— sin
b a a b b

may’ an
T

nw . nrx nwx’ may
+ — sin — cos €08 —— €08
a a

b

may’
Ty zy}

«exp (=T |2 — 2 ). (17)

The Green’s function G. is now derived from (17) with the aid
of (7). To this end we use the following expressions, obtained from
the application of the distribution theory, to simplify the result:

‘%“:0(3 —2) — 0@ —2)Jexp (—Twn |2 — 2’ |)}

=[~Tun +26(z — 2')Jexp (=Tun |+ —2'|) (18)
and
8z — 28y —y)
2 & €néom , MWL, nwx’ may mwy’
=2 > " sin — gin —— 0§ —= €08~
"t meo QD a a a b
g nnx’ . mwy . mwy’
=3 Z@cosn—-mcos T sin—’rysm ad . 19)

et m=0 Ob a a b b
The preceding equation is known as the “completeness relation.”

Having employed (18) and (19) in the process of determining G.
from (7), one finally obtains the following equation:

1.
Golr|7) = Gu — Z358(r — 1) (20)

2 n€0m mm z
= k2 Z Z Q:LOTEI(‘)‘ exp (—=TFun [z — 2" |) {I:(T) - I‘,m2:|
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'3 2
vc0s ™™ cos ™™ sin ™ in ™™ 52 +| (%) = Dot | sin 2 P =31Re —jwu[ [Ga(r | 1)+ J() - T*(r) &' dv.  (25)
a a b b a a
L O I SO e DL III. COMPUTATION OF THE DYADIC GREEN’S
a b » Y a b a FUNCTION G, IN CAVITIES
nxx’  mwy  may .. nwmr  nrx . nax In this section, we will constru‘ct the electric-type dyadic Green’s
b 23 — % b cos o sin p function G, for a rectangular cavity by following the steps developed

in Section II. The geometry of a perfectly conducting rectangular
cavity is constructed by choosing a, b, and ¢ as the cavity dimensions
along the z, y, and z axes, respectively.

The major difference in computation of G, for the cavity com-
pared with that of the waveguide is the functional form of gm,
which, for the cavity, is determined to be

mry mny’ . mwaT
+sin —— cos Y
b b b a

nax' muy . may an

9m (T ] ")

——7—nbz-r[0(z —2') —0(z —2)]

i €onéoment
abe | k? — o ’ i ’ - tr ’
a b ¢

anf . nxx | nax’ mmy may’ lwz In2
-4 7% | sin — sin COS —— COS €OS — €0S ——
a a b b [ c

Me
Ms

I
B
o~
3

=0 m'

nrr . nwx’ mry . MaY .
Yz
a b

mmn
+—b— [6(z —2") —8(z' —2)]
~n nrT nwx may mzy’ lnz laz
nxr . nwx’ . omwy  may’ 5 +yy | cos = = cos — = sin 5 sin p  COST00sT

a

A nwx nwe’ mey may’ laz | lnz'
sin — sin — ] ¢ .
a a

+ 2 [0z — ) — 06 — )] b b e e
(26)
’ .
-sm——ﬂ? coszbﬂ smy%/sm nry 3% Substituting (26) into (10) and using (7), we finally obtain the
a a

following equation for G, which is valid in the entire cavity:

— %r [6(z —2") —0( —2)] G(r|7) = Go(r|7) — %1; @z 4+ 9y +22)8(r — 1) (27

' ’ where
nxx . nxx . mwy . m;ry 52} @1) 1
a ] w =]
A ne TEEIE e
We have introduced dyadic Ge in (20), in order to emphasize the K 70 mo 120 i\ 2 ma\? 1r\2
existence of — (1/k?)226(r — r’) in the solution of G.. It is easy abe I:Ic2 - (;) - <T> - <—c—) :I
to check that the following relations hold:
V-G(r|r) =0, rFEY (22a) ma\* Ir\? nrx  naxr’ | mxy . may’
¢ (—b—> + (:) cos—a—cos—a—smT snT
Go(r|r) =[G |nNT (22b) lrz . lx2' . |:<l7r>2 <n1r)2:, . nxx . nww’
egin—sin—2zz +||—) +{— sin — sin ——
where T indicates the transpose operation. Equation (22b) may be ¢ ¢ a a
interpreted as the result of the reciprocity theorem. The preceding . .
results were compared with those obtained by Tai [2], and perfect .08 MY os may’ sin lrz sin la2’ 5+ I:(Z‘_‘f) + (f’_”i") ]
agreement was observed. It is very important to mention that, had b b c ¢ a b
the derivatives not been defined in the sense of distribution [ (14)- ’
(18) ], the term — (1/k2)225(r — r’) would have been missed very nax . nxx’ . may . mxy  lez lnz ..
easily in the computation of (20). -sin @ sin e sin b sin 008 ¢ cos ¢ 5

Substituting (20) into (1), the E field may be derived in the entire
waveguide as follows:

1 ~
E = '—jw;.t/ GerJdy' = ——jw,uf GoJdy' — —J.(r)z. (23)
] Jwe
One can readily show that Gauss’ law, i.e., V-E = p/e, is now
satisfied.

It is interesting to note that the average power radiated by the
current source depends only on G., viz.

P=%m/5ﬁw @4)

or

nr mw nrx | nxx' | mwy mxy' . lwz |2
sin — sin — 2y
¢ ¢

bosa a b b

4

mrler . nxr . nwx' mry . mwry .

b ¢ a a b b ¢ c

. l1rz . l1rz' AA
sin — SIn — Y&
[4 4

lnz 2’ an

sin — cos — Yz

Inz ln2d’ AA
¢os — sin — 3y
c c
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Ilrne , nox nex’ | may , mxy  lwz , Ilnd'
— — — §In —— C¢08 — slin —— 81N COS ~— 8l — 32X
¢ a a a b c e

nw lr nrx . nwx! . mwy . mwy . lwz g’ .
-~ —— -— C08 ~— SIn ~— S1in —— SIn sSin — COS —— X% .
a c a a b b c c

(28)

The main difference between (27) and (20) is the appearance of
the terms — (8(r — ') /k®)1 and (8(r — r')/k?)%% in them, respec-
tively. This indicates that if the current source is transverse in the
waveguide, we will not obtain any term like — (1/jwe)J (1) in the
computation of the E field, whereas the components — (1/jwe) -
[J(N% + J,(n¥] will show up in the computation of the E field
in the cavity. The aforementioned difference between the equations
results because we used the functional exp (—I'nm | 2 — 2’ |) for the
waveguide case. This function has special characteristics when one
computes its derivatives [(15) and (18)]. In other words, the in-
finite nature of the waveguide comes into the picture when one
computes G, for the waveguide.

IV. CONCLUSION

It is possible to construct the complete dyadic Green’s function
by employing the scalar eigenfunction of the Helmholtz equation.
Care must be exercised in defining the derivatives in the sense of
distribution and in using the correct completeness relation in order
to compute the correct dyadic Green’s function. This leads to the
computation of the E field in the entire structure as well. The
procedure discussed in this short paper may also be used to determine
the complete form of the dyadic Green’s function for nonrectangular
waveguides and cavities.
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Enhancement of Surface-Acoustic-Wave Piezoelectric
Coupling in Three-Layer Substrates

A. VENEMA awnp J. J. M. DEKKERS

Abstract—Numerical results with respect to the piezoelectric
coupling of a three-layer substrate (CdS-SiO,~Si) are presented.
{111) -cut Si is used, and the direction of propagation is [112],
the SiO, layer is amorphous and the CdS layer (hexagonal, 6 mm)
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has the ¢ axis normal to the substrate. The choice of these materials
is connected with the integration of acoustic surface-wave devices
on silicon. The interesting result is that, depending on the applied
transducer configuration for particular values of kh of the SiO; and
CdS layer, an increase in the piezoelectric coupling occurs. Its
maximum exceeds the value of the coupling in the two-layer sub-
strates: CdS-Si0, and CdS-Si, therefore more effectiv: interdigital
transducers can be designed for three-layer substrates.

The integration of frequency-selective acoustic surface-wave de-
vices on silicon (Si) substrates has interesting device asoects [1]. Of
particular interest are the structures which can be combined with p-n
eircuits and which can be realized by the application of silicon planar
technology to one monolithic device. Since silicon is nonpiezoelectric,
thin-film piezoelectric areas, including interdigital transducers,
are necessary to convert electrical signal energy inlo acoustical
energy. Cadmium sulfide (CdS) and zinc oxide (ZnO) are two ma~
terials commonly used in the construction of piezoelecsric films.

To be compatible with silicon planar technology, the piezoelectric
film must be separated from the silicon substrate by a (thermally
grown) silicon dioxide (SiO:) layer. This layer also provides an elec-
trical insulation between the silicon-substrate and the interdigital
transducer, in case the configurations 4 or B are used (Fig. 1). In
our calculations, however, the electrical conductivity of the silicon
is assumed to be zero. This then leads to a substrate consisting of
three layers, with 8i and SiO. as essential materials. The (111 )-cut
silicon wafer has a scribing flat in the (112 ) plane.

An important design parameter for surface-wave interdigital
transducers is the piezoelectric coupling coefficient K that is a measure
of electrical to acoustical energy conversion and vice versa. K has
been calculated from the relative change Av/v in the phase velocity
v, when an electrically perfect conducting plane is placed at the posi-
tion of the interdigital transducer [2]; K% = 2| Av/v | (approxi-
mately). The present calculations are an application of the theory of
elastic wave propagation in thin layers, as given by Farnell and
Adler [3], to a three-layer substrate CdS—8i0s—Si. Tlis is in con-
trast to Armstrong and Crampin [47, and Fahmy and Adler {57, who
used a matrix formulation to perform these calculations on multi-
layer substrates.

The following specifications and assumptions are made (Fig. 1).

The layers are considered to be free of any loss.

The CdS layer (hexagonal, 6mm) has the ¢ axis normal to the sub-
strate surface.

The amorphous SiO; layer is considered electrically and elastically
equivalent to fused quartz.

The Si substrate is (111) cut, coplanar with the X;-X; plane and
considered as a half-space.

The constants of the CdS and Si material were taken from Slobod-
nik and Conway [6] and those for used quartz were from Auld [7].

The mass loading due to the conducting planes is neglected.

The three-layer substrate is unbounded in the X:-27, plane.

T TTY

|

(o]
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A

Fig. 1. Three-layer substrate with four possible transducer configura-

tions.



