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On the Question of Computation of the Dyadic Green’s

Function at the Source Region in Waveguides and Cavities

Y. RAHMAT-SAMII

Abstracf—The derivation of the dyadic Green’s function for rec-

tangular waveguides and cavities is approached systematically by

using the theory of distributions. It is shown that, in order to obtain

a complete solution for the field distribution in the entire structure,

one must add an additional term to the classical expansion which is

valid only outside the source region.

I. INTRODUCTION

In a recent paper, Collin [1] has discussed the question of in-

completeness of the E and H modes in the source region of a wave-

guide, and has shown that an additional term must be added to the

classical representation of the field expression in order to derive

a complete solution that is valid both in the source and source-free

region of the waveguide. Tai [2] has also noted the difficulties in-

volved in the computation of the dyadic Green’s function, and hae

presented a solution based upon the use of eigenvector functions

lf and N. Neither of the preceding methods shares the simplicity of

the conventional techniques used in solving the source-free wave-

gnide probleme, nor gives a clear picture of removing the difficulties

involved in computing the dyadic Green’s function in the source

region.

The purpose of thk short paper is to develop a systematic and novel

approach for determining the dyadic Green’s function and, conse-

quently, the field distribution in the entire region of rectangular

waveguidee and cavities. It is shown that if one carefully defines the

derivatives in the distribution sense and applies the correct complete-

ness property of the modes, it is then possible to construct the com-

plete solution for the entire structure just by employing the scalar

eigenfunctions of the Helmholtz equation.

II. COMPUTATION OF THE DYADIC GREEN’S

FUNCTION G. AND FIELD DISTRIBUTION

IN WAVEGUIDES

It is well known that the electric field excited by an electric current

source can be expressed in terms of the dyadlc Green’s function

G.(r I r’) as
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E (7’) = –j.w
/

G,(r ] r’) .J(r’) d/. (1)

?

One may notice from the preceding equation that care must be

exercised in deriving G. (r I r’) at the source region if one wants to

perform the preceding integration correctly. It is our purpose to

derive the correct G. in this section. The geometry of the problem

with dmensions a and b along z and y axes, respectively, is a perfectly

conducting rectangular waveguide aligned along the z axis and

excited by a finite-volume electric current source.

To attack the problem, we write the Maxwell’s equation and

necessary boundary conditions as

}

vxH=J+jkleE

, in the waveguide (2a)

v x E = –juplf

;xE=O, on the wall. (2b)

It is assumed that the wavegnide is filled with a homogeneous and

isotropic material. In order to obtain the unique solution, the field

components must also satisfy the Sommerfeld radiation condition

along the z axis. From (2) one eaeily concludes that

v.~ = (), in the waveguide (3a)

A
?s.H = o, on the wall. (3b)

It is also trivial to show that E and H fields can be separated as

follows:

VXVXE–kWt=–jOPJ (4a)

VXVXH– RH=VXJ. (4b)

In order to solve the preceding boundary-value problem, we intro-

duce the electric-type dyadic Green’s function G, (r / r’) and

magnetic-type dyadlc Green’s function G~ (r I r’) by the following

definitions:

VXVXGe– l& G.=18(r– r’) ,, “ (5a)

~XG~=O, on the wall,. ” (5b)
,

and ,/’”

VXVX G~–fc’Gn = V X 16(r’– r’) (6a)
A

}

n. G~=O

? on the wall (6b)

~XVXG. =0

where I is a unit dyadic. Notice that G. and Gn are also subjected

to the Sommerfeld radiation condition ae discussed by Tai [3].

The first equation of (2a) shows that the following relation holds

between G% and G.:

k2GC = V X G~ – I$(r _ r~). (7)

Note that (1) can be derived by applying the Green’s theorem

between E and G., and by making use of the boundary and radiation

conditions.

The central issue regarding the completeness of modal representa-

tion of the dyadic Green’s function is that v. G. # O in the wave-

guide. That V. G. # O is evident if the divergence operator is

applied to both sides of (5a) and by recalling that v. B (r — r’) # O.
Shce V. G. is not zero in the entire waveguide, G. cannot be con-

structed in terms of the superposition of E modes alone (see, for

instance, Goubau [4]). An additional term is necessary to obtain

the complete form of G.. In what follows, G. will be found by using

(7) after the complete form of G~ is derived. It should be noted that

in contrast to G., G~ can be expressed in terms of H modes only,

since V. G~ = O everywhere.

In the following, a procedure is presented for constructing G~

which ‘is believed to be simpler than Tai’s method. Tai [2] used

eigenvector functions ill and N, which are dlvergencelees vectors to

expand v x [13(r — r’), and then he constructed G- from (6a).
In our procedure, we use the fact that V. G~ = O and V X V X =
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VV. – P to obtain the following alternative form for (6), namely

(vZ + k’) Gm = -V X Ifi(r – r’) (8a)

A

}

tz. Gn+=O

? on the wall. (8b)

iXVXGm=O

The preceding equation is an inhomogeneous Helmholtz equation

which is readily solved by introducing another Green’s function in

the following manner:

(V+,@)g~ = –l~(r – r’) (9a)

1

$.gm = o
9 on the wall. (9b)

6X VX 9.=0

Applying Green’s theorem, one obtains

Gm(r I r’) =
/

g~ (r I r“). V“ X 13(rt — rll) dpt’ (lo)

where V“ means differentiation with respect to rjl coordinates.

Simplification results through the introduction of g~ because it is

a diagonalized dyadic, and therefore its elements may be obtained

by simply solving a scalar Helmholtz equation in the following

form:

(V’ + k’)

9m””

H
1

9.W =– 1 $(r– r’) (ha)

1

.

1n.gm = o
7 on the wall. (llb)

;Xvxgm=o]

To obtain the unique solution, the radiation condition must also be

fulfilled. The boundary value problem (11) may be easily solved

to obtain the following result:

gm(r] r”) = f ~eexp (–r.mlz –2”1)
.+ ~.O 2abr.w

[(A. )nrx” mfl m~”
. xx sin ‘—m sin — Cos — Cos —

.a a b b

(

rmx”
‘ ‘+ ;0 Cos‘:x Cos —

)

m7ry m7i-y”
sin — sin —

a b b

( )1
+x Cos=xCos= Cosm—~Cosm+

a
(12)

a

where e is an indicator with the following definition:

I
1, m=O

*.

2, m#O

(13)

‘nm2=k2-(9-(Hand‘=”(’’)1”
We now substitute (12) into (10) and perform the integration to

solve for Gm. This integration can be done in a simple way if one

incorporates some elementary theorems of the distribution theory

[5], [6]. To do this, the following equations are used to simplify the

process of integration in (10):

“’X16(’’-’”)‘[(+’)’-(+’)’1’+[(+’)’

763

+ exp (—rnm I z – z“ 1) = rnm[e(z — z“) — 0(2” ‘- z) 1

.exp (-rnw I z – 2“ 1) (15)

where

{

1, Z>o

tl(z) =

o, 2<0

and

Having employed (14), (15), and (16) in (10), me can easily

perform the integration and obtain the following remit:

Gm(r I r’)

= iii=
{

t
r.m[e(z — z’) — 9(z’ — z) lsin ~~z sin ~

am a a

mry m7ry’.6 m~ . mrx . nrzt wry m7ry’..
.Cos — Cos —

b b
~Y + — sm~ sm — COS–— sin—

b b b
X2

a

mr rmx
t mry’ .A

——cos —sin= sin Wsin —
a a a b b

yz

– r.m[e(z – 2’) – 8(2’ – Z)]

n7rx n7rx’ m~y m~y’ . .
.COS — Cos —— sin — sin

a a b
~ yx

mr nrx nrxr m~y mry’..
— — cos — cos — cos — sin —

b b b
Zx

a a

.exp (—rnnlz —2’ 1). (17)

The Green’s function G. is now derived from (Ii’) with the aid

of (7). To this end we use the following expressions, obtained from

the application of the distribution theory, to simplify the result:

~ {[0(2 –2’) –19(2! –z)]exp (–I’.n]z –2’1))

= [-re~+26(z-z’)]exp (–r.~1~-z’1) (18)

and

J(X – $’)a(y – y’)

= ; :o~” ‘“z ‘;’ ‘:Y Fsin ~ sin — cos — cos

=~f5TJF ‘:x ‘:x’ “ ‘;y “ y.cos — cos — sm — sm (19)

The preceding equation is known as the “completeness relation.”

Having employed (18) and (19) in the process of determining G,

from (7), one finally obtains the following equation:

where

G., (r \ r’)

(20)
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“cos~’os~sin~sin~’’+[(: bm’lsin:P = ~Re–@p
//

[G., (Y I r’) .J(r’)]. J*(r) dv’dv. (25)

“sin:cos~c”s~oo+[w+kmsin~III. COMPUTATION OF THE DYADIC GREEN’S

FUNCTION G. IN CAVITIES

. rmx’ m~y mry’ ~. mr m7r rmz nrzt In thk section, we will construct the electric-type dyadk Green’s
.sm — cos — cw —

b
zz— —— cos — sin —

a b ab a
function G. for a rectangular cavity by following the steps developed

a
in Section II. The geometry of a Perf ectl.v conducting rectangular

mrry m~y’ ..A m~ nw
cavity is constructed by choosing a, b, and c as the cavity dmen~lons

*sin — cos —
b b ‘y”%;

along the x, y, and z axes, respectively.

The major difference in computation of

n~x
pared with that of the waveguide is the

n~x’ m7ry m~y’ . .
*sin — cos — cos — sin

a b
~ yx which, for the cavity, is determined to be

a
9m (r I r“)

–y[e(z – z’) – L9(z’ –z)]

rmx . rmx’ mry . m~’ . .
. sin ~ sm — cos — sm

b
y yz

a

+7 [e(z – 2’) – (?(2’ – 2)]

G. for the cavity com-

functional form of g~,

{( rmx rmx’ m7ry m7ry’ l’lrz

)

LKz’
. 4% sin — sin — cos — cos

b
— ‘0s -— Cos —

a a b c c

rmx rmx’ mry m7ry’ ,,A ( )+ ~~ cos ‘~x cos ‘~’ sin’~ sin? cos ~ cos ~

. sin — sin — sin — cos —
b b

ZY
a a

( m7ry’
+ ;2 ‘0s y ‘0s ‘:’ ‘0s ‘+Y‘0s ~ )}sin~z sin~

+;[0(2 –z’) –O(Z’ –z)]
c c“

(26)

rmx rmx’ . m~y m~y’. .
-sin — cos — sm — sin — Zx Substituting (26) into (10) and using (7), we finally obtain the

a a b b following equation for G. which is valid in the entire cavity:

—;Ee(z – z’) – 0(2’ –2)]

rmx f-hxf m~y . muy’ ~z
.cos — sin — sin — sm —

a a b Ib“
(21)

We have introduced dyadic G,o in (20), in order to emphasize the

existence of — (1/kj) ~~~ ( r — r’) in the solution of G,. It is easy

to check that the following relations hold:

V. G.(r ] r’) = O, r#r’ (22a)

and

G,(r / r’) = [G. (r’ I r)]T (22b)

where 2’ indicates the transpose operation. Equation (22b ) may be

interpreted as the result of the reciprocity theorem. The prece~lng

results were compared with those obtained by Tai [2], and perfect

agreement was observed. It is very important to mention that, had

the derivatives not been defined in the sense of distribution [ (14)–

(18) ], the term – (1/lcz) ;;~ (r – r’) would have been missed very

easily in the computation of (20).

Substituting (20) into (1), the E field maybe derived in the entire

waveguide as follows:

E = –jkp
/

G.. Jdv’ = –jkp
!

G.o.Jdv’ – ~eJ.(r)i. (23)

One can readily show that Gauss’ law, i.e., v-E = p/ej is now

satisfied.

It is interesting to note that the average power ratilated by the

current source depends only on G~o, viz.

where

‘{[(3+(91‘:x ‘:’ ‘~’ %cos — cos — sin — sin

“sin:sin~’’+[(:)+wsin=in~’

mrx . mrxr . m~y m7ry’ lTZ l’lrz’
-sin ~ sm — sm — sm —

b b
Cos — Cos — X

a c c

rm m~ rmx nux! mwy m7y’ lmz lUZ’
———cos —sin —sin —cos —

ab a b b
sin — sin — $;

a c c

m7r rm rmx rmx) mry . mm=y’ . brz . luz’ ~.
———sin —cos —cos —sn -

baa b b
sm — sm — yx

a c c

mu lT t m7ry’ 17Tz’A,,
— —— sin ‘x sin’= cos ‘—q sin —

lTZ

bca b b
sin — cos — yz

a c c

(24)
h mu . n7rx ‘ me’

— —— sm — sin ‘Z sin ‘Zy cos —
lrz .%2’ AA

cb b b
cos — sin — zy

a a c c
or
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177n3r rmx mrx) m7ry mqi’ hrz 17rz’
-——sin— cos — sin—sin

b
— Cos

b
—sin— ;;

ca a a c c

nrr lT n7rx nz-z( mq m~y’

}

sin ~ ~os @J ..,$
— ——cos —sin —sin — sin—

ac a a b b c c“

(28)

The main difference between (27) and (20) is the appearance of

the terms — (6 (r — r’) /kz) I and (6 (r — r’) /kz) $$ in them, respec-

tively. This indicates that if the current source is transverse in the

waveguide, we wilf not obtain any term like — (1/joc)J, ( r) ~ in the

computation of the E field, whereas the components — (l/jot).

[J= (r); + J, (r)j] will show up in the computation of the E field

in the cavity. The aforementioned difference between the equations

reeults because we used the functional exp ( — r.~ I z — z’ I) for the

waveguide case. Thk function has special characteristics when one

computes its derivatives [ (15) and (18)]. In other words, the in-

finite nature of the waveguide comes into the picture when one

computes G. for the waveguide.

IV. CONCLUSION

It is possible to construct the complete dyadic Green’s function

by employing the scalar eigenfunctiop of the Helmholtz equation.

Care must be exercised in defining the derivatives in the sense of

distribution and in using the correct completeness relation in order

to compute the correct dyadic Green’s function. Thk leads to the

computation of the E field in the entire structure as well. The

procedure discussed in this short paper may also be used to determine

the complete form of the dyadlc Green’s function for nonrectangular

waveguides and cavities.

ACKNOWLEDGMENT

The author wishes to thank Prof. R. Mittra, Dr. T. Itoh, and

W. Pearson for helpful discussions.

REFERENCES

[1] R. E. Collin, “On the incompleteness of E and H modes in wave
guides,” Can. J. Phqs., vol. 51,, pp. 1135–1140, 1973.

[2] C. T. Tai, “On the eigen-function expansion of dyadic Green’s
functions, ” Univ. Michigan, Ann Arbor, Tech. Rep., Apr. 1973.

[3] —, Dyadic Green’s Functions in Electromagnetic Theory. Scranton,
Pa.: Educational Pubs., 1971.

[4] G. Goubau, Electromagnetic Wavegutdes and Cavities. New York:
Pergamon, 1961, pp. SS-237.

[5] J. Arsac, Fourier Transforms and the Theorg of Distribution. Engle-
wood Cliffs, N. J.: Prentice-Hall, 1966.

[6] A. H. Zemauian, D%strlbutton Theory anti Transform Analysis.
New York: McGraw-Hill, 1965.

has the c axis normal to the substrate. The choice of these materials

is connected with the integration of acoustic surface-wave devices

on silicon. The interesting result is that, depending on the applied

transducer configuration for particular values of leh of the SiO, and

CdS layer, an increase in the piezoelectric coupling, occurs. Its

maximum exceeds the value of the coupling in the two-layer sub-

strates: CdS-SIOZ and CdS-Si, therefore more efiectiv: interdigital

transducers can be designed for three-layer substrates.

The integration of frequent y-selective acoustic surface-wave de-

vices on silicon (Si) substrates has interesting device as~ects [1]. Of

particular interest are the structures which can be combined with p-n

circuits and which can be realized by the application of ~ilicon planar

technology to one monolithic device. Since silicon is non,piezoelectric,

thin-film piezoelectric areas, including interdigital transducers,

are necessary to convert electrical eignal energy into acoustical

energy. Cadmium sulfide (CdS) and zinc oxide ( ZnO ) are two ma-

terials commonly used in the construction of piezoelec tiric films.

To be compatible with silicon planar technology, the piezoelectric

film must be separated from the silicon substrate by i (thermally

grown) silicon dioxide (Si02) layer. This layer also provides an elec-

trical insulation between the silicon. substrate and the interdigital

transducer, in case the configurations A or B are used (Fig. 1). In

our calculations, however, the electrical conductivity of the silicon

is assumed to be zero. This then leads to a substrate consisting of

three layers, with Si and SiO, as eesential materials. The (111 )-cut

silicon wafer has a scribing flat in the (112) plane.

An important design parameter for surface-wave interdigital

transducers is the piezoelectric coupling coefficient K that is a measure

of electrical to acoustical energy conversion and vice versa. K has

been calculated from the relative change Av/v in the phase velocity

o, when an electrically perfect conducting plane is placed at the posi-

tion of the interdlgital transducer [2]; KZ = 2 I AzJ,’?JI (approxi-

mately). The present calculations are an application of the theory of

elastic wave propagation in thin layers, as given by Farnell and

Adler [3J to a three-layer substrate CdS–SiOt–Si. This is in con-

trast to Armstrong and Crampin [4], and Fahmy and Adler [5], who

used a matrix formulation to perform these calculations on multi-

layer substrates.

The following specifications and assumptions are m:ide (Fig. 1).

The layers are considered to be free of any loss.

The CdS layer (hexagonal, 6mm) has the c axis normal to the sub-

strate surf ace.

The amorphous SiO, layer is considered electrically and elastically

equivalent to fused quartz.

The Si substrate is (111 ) cut, coplanar with the X1–X2 plane and

considered as a half-space.

The constants of the CdS and Si material were taken horn Slobod-

nik and Conway [61 and those for used quartz were from Auld [7].

The mass loading due to the conducting planes is negl ected.

The three-layer substrate is unbounded in the X1–2:2 plane.

Enhancement of Surface-Acoustic-Wave Piezoelectric
X3

Coupling @ Three-Layer Substrates
t

X2
n

<Ill>
- — ●X3

A. VENEMA AND J. J. M. DEKKERS

F
~+CdS’;q

X3=4 +[112]
.4 fMracf—Numeric@ results with respect to the piezoelectric =slo2~

coupling of a three-layer substrate (CdS-SiOl-Si) are presented. X3=o

{111 ) -cut Si is used, and the direction of propagation is [11~],
~&<& x,

;*:’~~; !
the SiO, layer is amorphous and the CdS layer (hexagonal, 6 mm) xl
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